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no longer be satisfied with any program that does the job,
but only with those that will give us what we need at an
acceptable cost. Most programs in our specialty have been
written by engineers, rather than by programmers, out of
necessity. It is understandable that, not having as much
expertise in software as in microwave technology, the
engineers produced programs that were not the most
efficient ones, neither in the usage of storage nor in the
utilization of central processor time.

The time has come for us to recognize that we can reduce
the cost of our CAD’s by seeking help from those among
us who have more than a casual knowledge of Basic or
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Fortran. As there are engineers specializing in instrumen-
tation who build our measurement gear or those specializ-
ing in devices who build our components, so in the coming
years there will emerge engineers who will interface with
the computer world. They will write our CAD programs
and will be the custodians of our computer-backed hard-
ware. These specialists will exchange information within
our own technical environment (including, it is hoped,
over the pages of S-MTT TraNnsactiONs) about hard-
ware and software techniques that produce good design
aids, and we shall have to create standards of performance
by which these tools can be objectively evaluated.

Semiconductor Device Simulation

CHARLES M. LEE, RONALD J. LOMAX, sENIOR MEMBER, IEEE, AND GEORGE 1. HADDAD, FELLOW, IEEE
(Invited Paper)

Abstract—Two of the numerical methods most widely used in
solving the set of partial differential transport equations for holes,
electrons, and electric field in semiconductor devices and the various
numerical instability phenomena which can be encountered are
described in detail. Also presented are approaches, using these
methods, to calculate dc static solutions and small-signal solutions,
and to simulate devices in voltage-driven, current-driven, and
circuit-loaded operation. Sample results are given for each mode of
operation for the case of Si avalanche-diode oscillators. The numeri-
cal methods and approaches are those developed at our laboratory
and sufficient detail is presented to permit the development of similar
Fortran codes by others.

INTRODUCTION

HE DEVELOPMENT of semiconductor devices with

complex modes of operation, such as avalanche diodes,
has necessitated the development of detailed analysis for
the behavior of holes and electrons and their interaction
with electric fields in such devices. However, the non-
Linearity of the equations which describe the behavior
of these particles in high electric fields, particularly when
space charge is significant or at high-frequency operation,
imposes severe restrictions upon any attempt to obtain
analytical closed-form solutions. Because of the collision-
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dominated conduction process, the particle trajectory
methods developed extensively to study plasma phe-
nomena, have little application to semiconductors. Hence,
numerical simulations [1]-[38] of semiconductor devices
have emerged as powerful tools for their study. In this
paper, some of these numerical methods, and in particular
those that have been developed and used by the authors
for simulating semiconductor devices and determining
their operating characteristics, are presented and reviewed.

Tare TransporT EqQUaTIONS

The behavior of holes and electrons in a one-dimensional
model of a semiconductor can be characterized by the
following partial differential equations:' the continuity
equation for holes:

P aJP
— 4 — =G = 1
= o 0 (1)
the continuity equation for electrons:
AN oJN
= == _@= 2
at ax @ 0 2
and Poisson’s equation:
oF
E _Lp_N=Np =0 (3)
oz €

where

1 The notation in this paper is chosen for easy translation into a
computer language (specifically Fortran).
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kT oP
JP=UP-E-P—-~.UP.— (4)
q ox
kT oN
JN=UN-E-N+—.UN-— (5)
q ox
P-N—ns
G=1IP.|JP|+IN.|IN|— " (6)

(P + N + 2n,)

time (s);
distance (cm);
hole density (cm—3);
electron density (cm™®);
hole particle current density (em—2-s7!);
electron particle current density (ecm—2-s7%);
impact and thermal generation rate (cm=3-571);
electric-field intensity (V-em™);
eleetronic charge (C);
dielectric constant (F-:cm™1);
doping density (em™®) (positive for the p-type
dopant, negative for the n-type dopant) ;
UP hole mobility (em2-V—1.g71);
UN clectron mobility (em?-V—.s71};
k Boltzmann constant (J/K);
T absolute temperature (K);
IP hole ionization coefficient (cm™);
IN electron ionization coefficient (¢cm™!);
7, carrier lifetime (s);
n; intrinsic particle density {(em=3).

N o
R N I

&

The material parameters UP, UN, IP, and IN are
functions of electric-field intensity. These may be func-
tionally approximated but for greater accuracy and com-
putation speed are usually stored in files in tabular form
based on measured data and extrapolations of measured
data. Intermediate values are linearly interpolated. To
solve the preceding set of nonlinear partial differential
equations on a digital computer, they are approximated
by a set of difference equations. These difference equa-
tions are solved for a given set of initial conditions and
boundary conditions. The various numerical methods
differ in how these difference equations are derived and
solved. In this paper, two numerical methods will be
discussed.

Tae Expricit METHOD

In this numerical method, a time-space mesh shown
in Fig. 1 is chosen to derive the difference equations.
Namely, the one-dimensional semiconductor is divided
into JW partitions. At both ends of each partition there
are space-charge points J (J = 1,---JW 4 1), and the
hole density, electron density, and doping density are de-
fined at these space-charge points. In the middle of the two
space-charge points, there are field points I (I = 1,+-+,JW)
and the electric-field intensity, hole current density, and
electron current density and those material parameters
which are functions of the electric-field intensity are de-
fined at these field points. The upstream particle density
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(J, K+1)
SPACE ~CHARGE
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W-LK)  (I-L,K) (4K (LK) (J+1,K)

Fig. 1. Time-space mesh for the explicit method (z = J-Az,
J =1+ JW + 1;t = K-At, K = 1,-++ KP).

is used in the drift current density terms and a central
difference is used in the diffusion current density terms.
In the explicit method, forward time differences are used.
The difference equations for the particle current densities
are, for E/X > 0,

kT
JPK = UPE-E{R-P;K — — -UP*-(Pr* — P/5)/Ax
q
(7)
and
kT
JNE = UNZK-EX Ny & +— -UNK
q
«(NyuX — N5 /ax (8)
for E/X < 0,
kT 3
JPE = UP/K-EX-Py — — -UP/®
q
(Prg® — P;/5)/bdx (9)
and
kT
JNIK = UN]K'EIK'NJK + I 'UNIK
q

- (NJ+1K — N&)/Az. (10)

The generation terms at the I points and the J points
are approximated by

GiE = [PK-|JPE | + INE - |JNE|  (11)

and

P/E.NE — p2

K — L((1.K K
Grf = 3G+ Gd) o N T 2m)

(12)

Given the preceding expressions, the continuity equations
for holes and electrons and Poisson’s equation can be
rewritten as

PEH = PiE 4 AL[GE — (JPE — JPr_<)/Az] (13)
NEH = NJE + AL-[GE + (JNK — JN1%)/Ar]  (14)

and

EEH = Bp £+ 4 g4 (P41 — N &+ — Np;)Az. (15)
€

For a given solution vector P;X, N;X (J = 2,+++,JW)

and E/X (I = 1,-+-,JW) at the Kth time step, the values

of UPX, UN;%, IP/X, and IN;X are obtained by linear
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interpolations of the mobility tables and ionization tables.
Then the particle current densities JP/X and JN/X are
calculated from (7) through (10) and the generation
terms (4% and G/X are calculated from (11) and (12).
Based on the preceding information at the Kth time step,
(13) and (14) are used to calculate the particle densities
P& and NAH1 (J = 2,--- JW) at the (K + 1)th time
step. The Values Of P1K+1, N1K+1, PJW+1K+1, and NJW+1K+1
are given by properly chosen space-charge boundary
conditions at the assumed metal-semiconductor inter-
faces. The electrie-field intensities E5 (I = 1,-«+ JW)
are calculated from (15) with the value of Ei¥*! chosen
to satisfy a proper electric-field boundary condition. At
this point, the advancement of the solution from the Kth
time step to the (K + 1)th time step is finished. This pro-
cedure can be repeated to advance the solution to K + 2,
K + 3,---, ete.

For each time advancement, the time step At is not
a constant. In fact, the value of Af has to be determined
at each time step to satisfy certain numerical stability
conditions in order to ensure that the numerical model
does not result in oscillatory behavior and diverge. There
are three stability conditions of this sort that have to be
observed as follows.

1) Causality Stability Condition: The effect (or the
response) of an excitation (or the state of the solution)
at the Kth time step will propagate to the (K + 1)th
time step in the time—space domain following a certain
characteristic path which can be interpreted as a causality
relation between the excitation and the response. If the
time step A¢ in the time-space mesh is chosen too large,
it will result, in effect, in a calculation of the response from
insufficient information about the excitation and a numeri-
cal instability will occur. The instability usually occurs
when the electric-field intensity is high and particles move
at the saturated velocity. This instability is associated
with the dJP/dx and 8JN/d9x terms in the continuity
equations. If only these two terms are retained in (13)
and (14), then substituting V Py.x and VNy.: (the maxi-
mum values of the particle drift velocities VP and VN)
for VP and VN and DPua.x and DNy.x (the maximum
values of the particle diffusion constants DP and DN)
for DP and DN yields

(PrFAH — Py5) /A
= — {[VPuax*PsE — DPnux(PrsX — P,/5)/Ax]
— [VPusxPro® — DPuux+ (P/ — Py)/Az]}/ Az
(16)
and
(NS — N&)Y /At
= {[VNmax*Ns® + DNuax+ (Nsa® — NE)/Ax]
— [VNuux"NsX 4 DNmax
- (N& — Nyi55)/Ax]}/Ax. (17)

If P,X and N X are smooth enough to be represented as
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P;E = 3 P,exp (imJAZ) - (gpm)¥

(18)
and
N& = i N, exp (tmJAZ) * (gn.m)¥ (19)

m=—u

the growth factors g, and g.,» ean be expressed as

Gpm = (1 — A,) + A, cos (m-Ax) — iB, sin (m-Ax)

(20)
and
Gum = (1 — A,) + Ancos (m-Azx) + 1B, sin (m-Azx)
(21)
where
2DPox- At VProax-Al
A =
? Az? + Ax (22)
VPorax* Al
B, =——
» Az (23)
2DNmax- Al VNpaxe Al
A, =
Azx? + Az (24
and
V Nuax+ Al
B, = ———
A (25)

In the complex plane g,.. and g¢,.. generate two ellipses
centered at (1 — A,) and (1 — A,) with major axes of
24, and 24, and minor axes of 2B, and 2B,, respectively.
These are shown in Fig. 2. To maintain numerical sta-
bility, the absolute values of g,,, and g,,» must be kept
less than unity, i.e.,

lgom| <1 [gom| <1 (26)

for all m. This requires that | 4,| < land | A, | < 1. Let
Vmax be the larger of VP,,.x and VN, .x and Du.x be the
larger of DPunax and DNy ax, then the time step Af must
be chosen such that

and

2
At < Az :
2’Dmax + Vmax’Ax

(27)

Im [gm]
UNIT CIRCLE

ELLIPSE

[ e bl
% N—= Re [gp,
u_\&\/_l—

Fig. 2. The growth factor in the complex plane.
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If this stability condition is violated, the values of the
particle densities will oscillate around a zero level at a fre-
quency of 1/(2-At).

2) Space-Charge Stability Condition: This instability
usually occurs when the electric field is low, the particle
densities are high, and the space charge is almost neutral
and uniform. In this case, the most important terms in
the continuity equations are

oP VP

— = —P

ot Jx (28)
and

oN OVN

— =N

at Jx (29)

and Poisson’s equation is

AQ

oF
= = % . (30)

ox
where AQ is the net space-charge particle density. Since

VP VP IE ¢ UP’

=— . — A
ox oF ox € Q (31)

and

VN VN oE q-UN’ AQ
ax oE  9x e

= (32)
where UP” and UN’ are the dynamic mobilities, the con-
tinuity equations become

NG 1

= ——AQ

3
at 7 (33)

where 7’ is the dynamic dielectric relaxation time constant

R (39
D n
1 ‘P.UF
= =T -3
Tp €
and
1 -N-UN’
o e 36)

Equation (33) signifies that if there were any charge
imbalance AQ it would relax exponentially to neutrality
with a time constant which is the local dynamic dielectric
relaxation time constant . However, in solving these
difference equations it is assumed that the rate of change
of AQ is constant over the time interval At, hence, the
change of AQ versus time follows the tangent line of the
exponential curve. If At > 2|7 |, the value of AQ will
overshoot to the opposite side of neutrality and result in
an even larger charge imbalance of the opposite sign at
the next time step. This phenomenon will be repeated for
each successive time step and the net space charge will
oscillate and increase indefinitely. To avoid this instabil-
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ity, the time step for each instant of time must be chosen
to satisfy the following space-charge stability condition:

At < 2|7 ]. (37)

3) Field Stability Condition: This instability usually
occurs at a location where there is a large gradient of par-
ticle density, such as at the transition between lightly
doped and heavily doped regions. Because of the large
gradient, the relative movement of particles will result
in a change in the net space charge of

AQ = ¢(AJP + AJN)- AL

This change in space charge will modify the electric field
by AE = q+AQ/e, and the modification of the electric
field will affect the movement of particles after a time
delay of At. Since

aN
dx

(38)

P
JP 4+ JN = UP-E-P — DP-g— 4+ UN-E-N + DN
x

and if Ej is the electric-field intensity which would yield
zero particle current for a given calculated particle density
profile, i.e.,

1 oP )
=— = . (pPE=_pNZ=
By UP.P + UN-N ( ox aiv> (39)

then
JP 4+ JN = (UP-P+ UN-N) - (E — E)). (40)
Therefore, the loop gain of the preceding interaction is

A(JP + JN)
AE

aB
AQ

el
A(JP +JN) |

_¢:(UP-P+ UN-N)

€

t = At/r (41)

where 7 is the local static dielectric relaxation time con-
stant and is given by

1 1 1
— ==
T Tp Tn
where
1_ _ q-UP-P
Tp N €
and
1 ¢ UN-N
Tn - € ’

If Az > 2.7, the change in the net space charge accumu-
lated during this time interval will be so large as to make
the value of E overshoot to less than E, and cause a par-
ticle current flow in the opposite direction at the next
time step. If this process is repeated for each time step,
the particles appear to move alternately to the left and
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to the right and the electric field oscillates around the E,
level. Hence, Af must be chosen to satisfy the field sta-
bility condition

At < 24| 7],

Although both the space-charge instability and the field
instability involve the effect of net space charge, in the
first instability the change of the net space charge is caused
by the gradient of the electrie field while in the second in-
stability the change of the net space charge is caused by
the gradient of the particle density. Also, if the thermal
recombination lifetime 7, is very short, there will be an
instability related to it, and the stability condition (37)
must be modified to include the term 1/7,. However, in
most situations 7, is too long to be important.

It is important to stress that the preceding stability
criteria should not be considered rigorous in any mathe-
matical sense. The justification for these criteria lies in
the personal experience that in the numerous computer
runs made, when these stability conditions were met, no
instability was observed.

Tur Impuicit METHOD?

In this numerical method, the time-space mesh as shown
in Fig. 3 is chosen in deriving the difference equations. Let
the vector [Q] and the vector [F] be defined by

P FP G — (3JP/ox)
[Q] = [F]= = .
N FN
(42)

G + (3JN/ox)
The definitions of JP, JN, and @ are the same as in the
explicit method except the recombination term is ignored.
The objective is to find a difference equation to approxi-
mate the continuity equations evaluated at the instant
of time halfway between the Kth time step and the
(K + 1)th time step, or

[[2Q221[Z@2.]
[ZQ3 ,ZJEZQ3,3][ZQ'3,4:|
(27,741 2Qs.s 7@ 41]

[ [ZE, [ ZE., ]

[ZEs,z:l[ZE3,3]

EZQJW—I ,JW——;:”:ZQJW—I.JW—I:[ZQJW—LJW___I

LZQsw.owa] [ZQsw.sw] |

[(ZEr 11 ][ZE; 1]

* This is based on Scharfetter and Gummel’s [11] method, except
for a modification in the boundary conditions.
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ot

Since [F] is a nonlinear funection of the solution and the
solution at K + (1/2) is unknown, the procedure is to
expand the [F] vector in terms of the solution at the Kth
time step

T s Gor (4]

+ TR [Z—E] o

Rearranging the terms yields

|2~ 0 | 1aQ) — 2 rye-ras] = orr e

(45)

This equation is identical to Scharfetter and Gummel’s
[11] difference equation, although the argument used in
its derivation is slightly different. Let the space-charge
operator be defined as

2 a
QK =|—— —<[FK 4
zo¥ - |2 - Sy (46)
the field operator as
9
ZEE =| — —[FIE 4
zE¥ = | - 2 v (47)
and the force vector as
[ZF]E = 2[F K. (48)
Then (45) becomes
[ZQT* - [AQT* + [ZET< - [AETF = [ZF K. (49)
Equation (49) can be rewritten in more detail as
x
—1 AP, &
AN,
AP,
AN
AP W
| AN ;w_
Az
AE; K 2F, [K
AE; | =| 2F,
AEJW 21’;JW
I:ZEJW,JW—IJEZEJW,JW]_
(50)

where
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SPACE ~-CHARGE
POINTS

FIELD POINTS
oot o 1 !
K - -
J-i I-1 J 1 1
Fig. 3. Tune—space mesh for the implicit method (x = J-Az,
J =100 JW 4+ 1;1 = KA, K = 1,+
[Z2Qs.741[ZQs s 1[ZQs 741]
oFP; oFP; [2 oFP;  oFP,
9P;4’ oN,, | | At oP; ' 4N,
_9FN,  9FN, OFN, 2 . 3FN,
L OPJ_l ’ 6NJ_1_ aPJ ! At aNJ
1
3 aFPJ aFP;
oPs1’ " 9N, J
(51)
ﬂr OFN,
| 0Py’ N 41 T
and
OFP; oFP;
3E1_1 aEI
[ZEJ,I—l:“:ZEJ,I:‘ = ’ . (52)
6F N J aF N J
aEI_l aEI

In (50) the large matrices are block tridiagonal and tri-
diagonal, respectively, other terms being zero. The terms
in these matrices are calculated at each time step (see the
Appendix). Thus at each J point ‘

AQr s

[Z2Q;.7-1,7ZQ5.0.2Qr511] | AQs

AQJ +1
AE;

+ [ZE; 1, ZE; ] + l: } =[ZF;]. (53)

AE;

Poisson’s equation can be used to reduce this [ Z] matrix
equation to a [7"] matrix equation (defined later). Define
QDXOEP by the following:

QDXOEP = q - Ax/e
then Poisson’s equation is
AEr, = AE; — QDXOEP -

(AP; — ANy). (54)

This can be used in the [Z] matrix equation to obtain
the [7"] matrix equation:

AQs

[7Qs,s1,TQs.7,TQs.r11] | AQs

AQiya

+ [TE; ] - [AE] = [TF;] (55)
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where
[TQs.s4] = [ZQs,74] (56)
[7Q;.,] = [2Qs,;] — QDXOEP « [ZE; ;1 —ZEs,14]

- (57)
[TQs.rn] = [ZQy,741] (58)
[(TE; ] = [ZE; 1] + [ZE; (] (59)
and
[TF;] = [ZF;]. (60)

The preceding [77] matrix equation can be further re-
duced to an [[S7] matrix equation by assuming that the
following recursion relation exists:

[AQ,] = [QF 1+ [QQs.731] - [AQr41]

+ [QE,; (JLAE:] (61)
or
[AQs4] = [QF ra] + [QQr.s] - [AQJ]-
+ [QE;114[AE 4] (62)

Multiplying by [7Q;,7—1] on both sides of the preceding
equation gives

[7Qs.s—] - [AQr1] — [TQr .y 1[QQs—1.s1[AQ,]

—[TQs 5] - [QE, 11 41[AE1 4]
= [TQs s J[QF s]. (63)
Eliminating the [AQ .1 ] term in (63) by using (55) yields
([TQs.s]1 + [TQs s 1J[QQs—1.s]) - [AQS]
+ [TQs.s11[AQr ] + [TE; r[AE!]

+ [7Qs 71 J[QE 1,11 ][AEr ]
= [TF;] — [TQs.sJ[QF s—].

Using Poisson’s equation again to eliminate the [AEr 4]
term in (64) gives

([7Qs./] + [TQs,s+1[QQs1.s] — QDXOEP
- [7Qr.s4] - [[QBss.r]— [QEs 111 TNTAQS]
+ [TQs,71J[AQs ] + ([(TEss] + [TQys.s1]
- [QE; 14 ])[AEL]

(64)

= [TF;] — [TQs .- J[QF 1] (65)
or
[8Qs.s10AQs] + [8Qr s [ AQs1]
+ [SE; [ J[AE/] = [SF,] (66)
where
[TQRQ,] = [(TQs. s [QQs—1.s] (67)
[TQQE,] = [TQs.s-1J[QEs114] (68)
[TQQF;] = [TQs s J[QF s1] (69)
[8Qs.,] = [TQs.s]+ [TQQQs]
— QDXOEP([TQQE,], —[TQQE;])) (70)
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[8Qs.741] = [TQs.741] (71)
[SE;;]=[TE;:]-+ [TQQE,] (72)
and '
[SF;] =[TF;] — [TQQF]. (73)

Finally, the [@Q] matrix equation is calculated from the
[ S] matrix equation:

[AQs] = [QFs] + [QQs.rn1[AQs 1] + [QE; 1 J[AE]
(74)
where
[QQs.rn] = —[8QssT" - [8Qs.s41] (75)
[QE;.1 = —[SQss1'[SEs.r] (76)
and
[QF;] = [SQs.,T[SF,]. (77)

To initialize the recursive calculations of (67)—(69),
the starting values for [Q@Q12], [@F1.1], and [QF;] can
be found as shown below. Recall that the boundary condi-
tion requires that [AQ:]= 0. Notice that [AQi] =
FQF] + [QQ:-1[AQ.] + [QE, [AE:]. In order to ob-
tain [AQ,] = 0 for any calculated [AQ,] and [AE,], the
following relations must hold:

[QQ1:]=10 (78)

[QE:.]J=0 (79)
and

[QF:] = 0. (80)

These are used as starting values to calculate [QQy,.1],
[QE;r], and [QF ;] for J = 2,--- JW.

The values of [AQ,w:] and [AE ;] are set by bound-
ary conditions. The solutions [AQ,] (J = 2,---,JW) and
[AEJ(I = 1,+++,JW) and then obtained by back sub-
stitutions, i.e., by repeatedly using (54) and (74).

DC Sovurtions

Both the explicit and implicit methods can be used to
calculate dc static solutions. To start with, an initial guess
of Py, Ny (J =1,---JW + 1) and E; (J = 1,--- JW)
must be made. Then, one of these two methods is used to
carry out the calculation for a sufficient time until the
difference between two successive calculations is less than
a preset tolerance (say 0.1 percent). The final calculation
is considered to be the de static solution.

At the boundary, it is assumed that the surface-state
density is high enough so that the surface recombination
velocity is infinite, and the semiconductor is very extrinsie.
Hence, the particle density at the boundary is

the majority particle density = | doping density |  (81)
and
the minority particle density = n,2/| doping density | .

(82)
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This is the boundary condition for the particle densities.

For the boundary condition on the electric field, in-
tuitively one might be tempted to apply a constant total
current across the device. However, if the device exhibits
some negative conductance and zero susceptance at a
certain frequency and if the device happens to be short-
circuit stable at this frequency, the calculation, with a
constant total current as a boundary condition, will result
in a relaxation-type oscillation instead of a de static solu-
tion. Hence, it is better to choose the value of the electric
field at the boundaries iteratively such that the space
average of the particle current density over the active
region of the device is equal to the specified de bias current.

For the explicit method, this boundary condition can be
applied either to E1 or to Esw. The integration of Poisson’s
equation is then carried out from this boundary to the
other boundary. For the implicit method, this boundary
condition is applied to AE;w; only the back substitution
is repeated for each choice of AE,w. Fig. 4 shows the dc
static solutions of an n*—p-p* Si diode biased at four dif-
ferent values of de current.

SMALL-SIGNAL SOLUTIONS

Once the de static solution of a device is obtained, its
small-signal solution can be calculated by applying per-
turbation theory to the de static solution. To derive the
perturbation equations, the continuity equations for holes
and electrons and Poisson’s equation [ (1)—(3) and defini-
tions (42) ] are employed.

Introducing small-signal perturbations AP,
AF yields

AN, and

P = Py+ AP
or  [Q]=[Q]+[AQ] (83)
N = No+ AN
E =E,+ AE (84)
P
JP = JPO—!—MPO AP+6JP0 AN+6J .AE  (85)
aJN, aJNo aJN,
IN = INy+ =50 AP + =2 AN + =22-AE (86)
and
G = Go—l—a—GO AP+6—G—° AN+—— AE  (87)

where Py, No, Eo, J Py, J N, and Gy are the de solutions, i.e.,

aJ Py dP,

_ — g0 8
oy =0 ot 0 (88)
AN N
dx ot
and
oF oF
0 L p_No—N») =0 Z—0. (90)
ox € ot

Assuming these small-signal perturbations vary in time
proportionally to exp ( jwt), substituting (83)—(87) into
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Fig. 4. The electric field (solid line), hole density (plus sign),
electron density (minus sign), and doping density (dashed line)
versus distance for an Si nt-p-p* diode biased at different values
of current density. (a) Silicon P-2-4-1 diode. JDC = 1.0 A/cm?;
VDC = 64.22 V. (b) Silicon P-2-4-1 diode. JDC = 100.0 A/ecm?;
VDC = 64.35 V. (c) Silicon P-2-4-1 diode. JDC = 1.0 kA/cm?;
VDC = 64.54 V. (d) Silicon P-2-4-1 diode. JDC = 10.0 kA /cm?;
VDC = 66.09 V.
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1)~(3) and eliminating all de¢ terms by using (88)-(90)
1elds

oFP oFP JFP
. _ z
JwAP 5P AP + N AN + " A (91)
. oFN oFN oFN
JwAN = FAP—{— oN AN + Y7 AE (92)
nd
9B _ 4 ap _ aN). (93)
ox €

iquations (91) and (92) are rewritten in matrix form as
ollows:

[0~ 20 ra01 - Z0F7 - TaBT = 103 (00

By using the same time-space mesh and the same formu-
ations for JPX, JN/X, and GyX that were used in the
mplicit method, a system of matrix equations can be con-
tructed similar to (50) and Poisson’s equation with only
he following differences.

aJ.
+ (W -

aJP oJN
= 1 _— _ . E

[]“’GJFQ(&E)JWJrq(aE)JW] At

aJP aIN\ 1| AP

+ g 2P /) I\GN .

JW Jw AN W
Since there is a null vector [0] at the right-hand side of
the small-signal equation, i.e., [ZF ] = 0, it can be shown,
when the [Z7] matrix equation is reduced into the [Q] ma-

trix equation, that always [QF] = 0. Recall [AQ Jsw1 = 0.
Hence, at the JW point

AQrw = QE w gw « AEsw

[APJW]
AN ;w QEN yw 5w

Substituting (96) into (95) gives the following boundary
condition for AE yw:

oJN
+ AN;w + (—GE'—)JW . AEJW]

(95)

or

QEP;w ow
« AEw. (96)

AJT

AEy =

Jwe 4+ qL(8JP/IE) yw + (8JN/IE) sw + (8JP/OP)sw + QEPrw sw + (3JN/ON)swQEN s sw]

1) Wherever 2/Af oceurred, jw now appears.

2) Instead of [2FK] at the right-hand side of (50), the
ull vector [0] now appears.

3) The doping density term is dropped in Poisson’s
quation.

4) All of the terms in the matrix equations are now
omplex numbers or complex variables.

5) The AP, AN, and AFE terms are redefined to be the
erturbations instead of the changes of the solution during
he time interval At.

Hence, after the de static solution of a device biased
t a specified de current is obtained, the calculation of
s small-signal solution at any specified frequency is
imilar to one time-step advancement using the implicit
1ethod. The implicit method computer program can be
hanged into a small-signal program after some modifica-
lons corresponding to the preceding differences.

The boundary conditions for the particle densities in
he small-signal caleulation are the same as those used in
he implicit method.

The boundary condition for the electric field is derived
s follows. Assume that the perturbation of the total
urrent across the device is AJ7T. The continuity of total
urrent at the point JW requires

JT = joe-AEsw + q - (AJPyw + AJNsw)

oJ P

= jwe + AE;w + ¢ - [(’a?)JWAPJW

oJ P
+ (_aE>JW « AE;w

(97)

Usually AJT = exp (jwt) A/em? is used in the calcula-
tion.

Once APy and AN; (J =2,--+-JW) and AE;
(J = 1,---,JW) are calculated, the perturbation of the
terminal voltage AVT can be found by

JW
AVT = Y (AE,-Az)

J=1

(98)

then the small-signal admittance and impedance can be
caleulated from AJT and AVT.
Fig. 5 shows the small-signal admittance of the same

2
50 GHz
J,.=05%I0°
dc 2 4
10 GHz o
\ —— o
2
3
=
\ o
2
L I
-2 (o] 2 4

G, kmho/cm2

Fig. 5. Small-signal G-Blocus of a 2-um p-type Si diode for different
bias currents. '

n*-p-p* Si diode biased at from 500 A/cm? up to 10 000
A/em? de current and over the frequency range from de
to 50 GHz.
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THE SIMULATION OF VoLTAGE-DRIVEN RF OPERATIONS

The objective of this kind of simulation is to understand
the device physics and to calculate the characteristics of
the device either as an oscillator or as an amplifier when
its terminal voltage is specified as a function of time.

The boundary conditions for the particle densities are
the same as in the de static calculation. The electric field
at the boundary is chosen to yield the specified terminal
voltage. For the explicit method, this is a one-shot cal-
culation. For the implicit method, the value of E;x¥ at
each time step has to be chosen iteratively until this
boundary condition is satisfied within a specified tolerance.

In some cases, it may be desired to study the RF opera-
tion of the device biased at a specified de current density
instead of a specified de voltage. For this purpose, the
ecircuit model shown in Fig. 6 can be used. Of course, the
coupling network between the device and the RF voltage
source can be made more complicated than the single
capacitor shown in Fig. 6. The terminal voltage at each
time step, which can be calculated by solving the circuit
equation, is used as the boundary condition for the electric
field.

Fig. 7 shows the terminal voltage waveform and induced
current waveform versus time generated by using the ex-
plicit method for an n*-p-p* 8i diode biased with a de
current source of 1000 A/em? and driven by a 25-GHz 10-V
sinusoidal RF voltage, coupled through a 0.1-uF/em?
capacitor. However, this circuit model does not always
yield single-frequency operation. When the device exhibits
negative conductance at a low frequency and the coupling
network is not chosen properly, this simulation sometimes
results in some low-frequency bias circuit oscillation in
addition to the specified RF voltage. Fig. 8 shows a sample
of this lower frequency oscillation which occurs when the
coupling capacitor in the simulation of Fig. 7 is changed
to 0.01 pF/cem?. To avoid these low-frequency oscillations,
the simulation can be done in the following way. Assume
the diode is driven by an RF voltage source and a de volt-
age source connected in series. The frequency and am-
plitude of the RE voltage source have fixed values, but
the de voltage source is to be iteratively chosen to yield
the desired de bias current density at the end of each
microwave period. The same solution vector for P, N,
and E at zero phase angle is used repeatedly until the
average current density over one microwave period is close
enough to the specified J 4., then the newly generated solu-
tion P, N, and E at 360° phase angle is used as the starting
solution and the preceding iteration is repeated. The cal-
culation is continued until the solution becomes periodic.
The transient period of this simulation has no physical
meaning because V4. is constantly being adjusted arti-
ficially. However, it always yields a single-frequency RF
voltage-driven periodic solution without the low-frequency
bias circuit oscillation. Fig. 9 shows the terminal voltage
and induced current waveform generated by this simula-
tion method for the same n*-p-p* Si diode driven by a
25-GHz 10-V RF voltage source and a dec voltage source
to yield a dc bias current of 1000 A/em? Fig. 10 shows the

5Jdc

()

DEVICE \/

169

Fig. 6. Circuit model for the simulation of devices biased with
specified dc current.
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Fig. 10. The electric field (solid line), hole density (plus sign), and
electron density (minus sign) versus distance for different values
of phase angle in the IMPATT operation for an Sin*-p-p* diode
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solution for P, N, and E at different phase angles when
the preceding simulation becomes periodic.

SimuraTiION OF CURRENT-DrivEN RF OppraTION

In this case, the total current density across the diode
versus time is specified. For the explicit method, the ter-
minal voltage at the (K 4+ 1)th time step can be cal-
culated from the given total current density by using the
following relation:

JTE = eW(VTER — VTE) /AL -+ JINE  (99)

where JINX is the induced current density at the Kth time
step. This calculated VT%+! is used as a boundary condi-
tion just as in the voltage-driven case. For the implicit
method, the value of AE;wX*! can be calculated from

AE 5+ =

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MARCH 1974

diode. Before the zero phase angle, the diode is assumed
to be biased at a constant current density of 0.1 A/cm?,
and the values of P, N, and E are calculated by the de
program. Starting from the zero phase angle, the diode is
driven by a constant current density of 20000 A/cm?.
The simulation is continued until the terminal voltage has
recovered to the dc breakdown voltage (this moment is
defined to be 180° phase angle). Then the diode is assumed
to be driven by the 0.1 A/em? current density between
180° and 360° phase angle. Fig. 12 shows P, N, and E
versus distance at several different phase angles.

SimoraTiON OF CrrcUIT-LoapED DEVICES

The objective of this kind of simulation is to investigate
the behavior of the device when it is connected to a micro-

AJ TE+12)

The derivation of the preceding equation is similar to
that of (97), except that the AJTE+A? jg redefined to
be the change of total current density between the Kth
and (K + 1)th time step.

The boundary conditions for the particle densities are
still identical with those used in the de static calculation.

Fig. 11 shows a simulation by the explicit method of
the TRAPATT mode of operation of the same n*-p-p* Si

150.0

100.0

VOLT

50.0

TERMINAL VOLTAGE

270.0

DEGREE

0 0.0 120.0 %0.0

PHASE ANGLE,

200.0

150.9

CURRENT DENSITY
KILO-AMP/SQ-CM

50,0
[———

N

90.0 180.0 210.0
PHASE ANGLE, DEGREE

Fig. 11. Terminal voltage, total current, and particle current
waveforms for the TRAPATT operation of an Si n*-p-p* diode
(diode width = 2 ym; f = 3.0 GHz; JTO = 0.1 A/em?; JT = 20
kA /cm?).

0 %60.0

(e/Al) + q[ (3JP/OE) swX + (3JN/IE) ;wX + (8JP/0P) ;jw QEPsw sw + (3JN/ON) sw QEN s sw"]"

(100)

wave circuit with some kind of de bias source. There are
basically two different approaches. One is the approach
used by Evans and Scharfetter [397], the other one is the
approach of Matsumura and Abe [40].

In the approach of Evans and Scharfetter [397], the
circuit is divided into several elements, each one of these
elements is represented by its A BCD matrix. The driving
point admittance Y;(w) at the device point can be found
by repeated multiplication of these matrices. Then the
impulse response y(f) of this circuit is obtained from the
inverse Fourier transform of the driving point admittance
Yd (w) ) 1.e. 5

1 0
ya(l) = 5;/ Yi(w) exp (—jwl) dw. (101)

The transfer admittance Y3(w) and the impulse transfer
admittance y,(t) from the biasing voltage source Vi to
the device point can be found in a similar way.

The total current across the device in the frequency
domain JT (w) is given by

JT(w) = —Yi(w) + Ver(w) + Yo(w) - V. (102)

At any instant of time ¢, the total current across the device
in the time domain JT(¢) is given by the convolution of
the impulse admittance and the voltage:

£
JTW® = Y(0) - Vo= [ gult — 1) - V() dr. (103)
=T
The convolution is truncated at T, beyond which vy, is
negligibly small. The calculation of JT'(¢) has to be done
at each time step, and is used as the boundary condition
for the electric field in the implicit method. For the ex-
plicit method, the terminal voltage VT'(f) can be cal-
culated similarly using the impulse impedance. The bound-
ary conditions for the particle densities are still the same
as those in the dc static calculation.
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In the approach of Matsumura and Abe [407, the de- TUNING SLUGS
vice is assumed to be connected to a transmission line p—2, — b— 2, —
filled with several tuning slugs and terminated with a load- R
ing resistor in series with a biasing voltage source as shown DEVICE , t
in Fig. 13. The characteristic impedances of the trans- ° 1,
. . . . . - b
mission line and tuning slugs are assumed to be inde-

pendent of frequency. In the transmission line, there is
a forward voltage wave v+ (,t) and a forward current wave
1+ (z,t) that travel toward the load, and a backward voltage
wave v—(xz,t) and a backward current wave 7 (x,t) that
travel toward the device. These traveling waves do not
change their shapes until they reach a discontinuity.
Hence, in the uniform portion of the transmission line,
for each At advancement these waves change as follows:

vH(x + Az, t + Af) = vt(x)0) (104)
v (x — Az, t + Af) = v (x,l) (105)
H(zt) = v+ (at)/Zo (106)
and
i (a,8) = —v(x,t) /Zs (107)

where Z, is the characteristic impedance of the transmis-
sion line and Axz/At = ¢ (wave velocity).

At the discontinuity (for example, at z; in Fig. 13)
given vt (2, — Az,t) and v- (21 + Ax,t), v+ (x,t + Af) and
v~ (@1,t + At) can be calculated from

Zo—Zl
+(ayt + Al) = 52—
vt (ay,t -+ Al) v—(xl+A:c)Z1+Z0
PYA
(o — Azt 108
+ vH(z; A:I:)Zl_l_zo (108)

Fig. 13. Circuit model used in the approach of Matsumura and
Abe [40].

and
v (21, + AY) = v+ (2 — Azt) Z ; ZZ
+ v (21 + Az,f) fo‘ 7 (109)
At the load plane z; the following results:
v (xL,t + Af) = —(—1—/—ZT)IIT-I/—R—1L/E&)
+ vt(xr — Ax,t) M (110)

(1/Zo+ 1/R1) "
At the device plane x, the following results:

At - W,

€44

VT(t+ A) = VT(t) +

AVT(@) — 2020 + Ax,t)/Zo — JIN () - Ad]
(111)

where A, is the device area and JIN () is the induced cur-
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rent. This calculated V7 is then used as the boundary
condition for the electric field in the explicit method. For
the implicit method, JT (¢ + At) can be found in a similar
way.

When performing this kind of simulation, the investiga-
tor has no prior knowledge about the oscillation frequency
and amplitude or the mode of operation in which the de-
vice will operate. Hence, although this kind of simulation
will yield results that are closer to physical reality, it is
very costly for analysis and optimization purposes.

ComparisoN oF THE IMpricIT AND ExprLIciT METHODS
FOR THE SIMULATION OF AVALANCHE DIoDES

Although the explicit method is very inexpensive for
each advancement of Af, because the size of Afis limited
by the stability conditions, it may become expensive when
the particle densities are high, the mobilities are high or
when the simulation is to be carried over a long time dura-
tion. For Si IMPATT devices, the explicit method has defi-
nitely proven to be less expensive. On the other hand, for
the calculation of the de solution the explicit method is
approximately twice as expensive as the implicit method.

As can be seen, the implicit method is complicated and
hence, is more expensive for each Af. On the other hand,
it is more stable numerically and the time step At can
usually be made very large. Because of this, the implicit
method is often used to calculate the de static solution by
setting the time step Af to be infinite. The stability condi-
tions for the implicit method have not been investigated.
It has been observed that if the initial guess is not good,
the implicit method sometimes becomes unstable with
At = o, while the explicit method always converges to
a dc static solution even with a poor initial guess, although
it may cost more because the calculation must be carried
over a large number of time steps. Usually, the explicit
method is used to calculate the first set of de static solu-
tions of a device, then the implicit method is used to find
the other de statiec solutions for different bias currents
using the first set of solutions as initial guesses. For large-
signal simulation of Si MPATT and TRAPATT diodes, the
explicit method has always been used by the authors. For
the simulation of a transistor, the implicit method is more
desirable because a high doping density is involved.

APPENDIX
Tae ForMuLATION FOR THE CONSTRUCTION OF THE
MaTtrix EQuaTioN 1N THE ImpriciT METHOD

The terms in the matrix equation (50) in the implicit
method can be calculated as follows. For each field point
1, the following are calculated:

KTOQDX = kT/(gAz)

oUP; dUN;
DUPDE, = NDE; =
UPDE; aF; DUNDE; oF;
ol P; oIN;
DIPDE; = DINDE; = i
Y7 T SR,

WhenAEI = 0, the following results:

P
3P _ g + KTOQDX)UP,
aP;
oJ Py
= —KTOQDX-UP
aP J41 Q !
aJ P I . aJ P I _ 0
ON;  9Nsn
8JPr _ UP; - P; + DUPDE;
oF;
. [E; - P; — KTOQDX (Py1 — Ps)]
aJN;
- —KTOQDX - UN
aN, Q T
8INt _ (g, + KTOQDX) - UN;
N1
aJN: _aIN: _ o
aP; 0P
and
8Nt _ . Ns. + DUNDE;
oF;

. [EI . NJ+1 + KTOQDX . (NJ+1 h NJ)]

When Er < 0, the following results:

aJ Py
= KTOQDX - UP
P, Q i
Pr _ (g, — KTOQDX) - UP;
dPsp
aJPr  aJPr
GN J B aN J41
8IPr _ ypy - Pyy + DUPDE;
oF;

: [EI « Prya — KTOQDX - (Pry1 — PJ)J
3IN: _ (E; — KTOQDX) « UN;
aN

BNy _ KTOQDX - UN;
N
dJN; _ dJ Ny _o
oP; 9P,
and
Nt _ UN; . Ny + DUNDE;
aF;

« [Er - Ny + KTOQDX - (Nya — Ni)l-
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(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)
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When sign (2) is defined as follows:

sign (z) =

+1,

-1,

fzz0

ifz <O

the generation terms are calculated as

26,

0J Pr
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P, = IP; - P, sign (JPr) (128)
G, dJNr .
aNJ = IN[ . aNJ - Sign (JNI) (129)
oGy oJ Py .
= JP; . —— . 1
Y e P sign (JPr) (130)
Gy dJN; .
Nor = IN; - N, - sign (JNy) (131)
and
Gy
Py = DIPDE; - |JP; | + DINDE; - | JN: | + IP;
(JPr) + IN; - 9N iem (JN 132
A E - sign (JPr 1o, Sen (JN1). (132)

Then at each space-charge point J, it can be seen that

Gy _ _1_ _(?GI—I
0Er 4 20Er,
oG _136:
oE; 20E;
Gy _ _1_ G141
Py, 20P;,
aGJ _ _1_ aGI-—l
ON;, T 26N J—1
20, _1 (001 100
aP; 2\ oP; ' aP;
0 1L (s, 2
aNJ 2 aNJ aNJ
989G, _ 1 4G
aPJ+1 2 aPJ+1
oGy 1 0G;
aNJ+1 2 8N1+1
i) (6JP) _ _L dJPr
dP; 1\ oz 7 B Ax aP;_l
i (aJN) 1 8JN1a
oN;\ oz /, ~ ~ Az 0N,

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

and

d (aJP) _ @ (0JN —0

aNJ_l dx J N aPJ_1 ox J -
3 (aJP) 1 (aJP, aJPI_l)
oP; " Az \oP; oP;
d (aJN) _1 (aJNI aJN,_l)
6N 7 Az dN; N,
o (30) _ 2 (o)
aN;\ oz /, oP;\ oz /),
3 (aJ ) R
aPJ+1 Jox J N Az 6P,1+1

3 (aJ > _ 1 3JN:
aNJ+1 ox 7 Ax aNJ+1

3 (aJP) N (aJN) —0
6N1+1 ax J 6PJ+1 ox 7 h

0 (GJP) _LaJPI—l
aE[_l ax J Ax 6E[_1
9 aJN) _ 1 3JNi,
6E1_.1 X /g A:l) 6E1_1
3 (aJ ) 1 aJP;
dEr \ 9z /; Az 6E1
kB (aJN) _ 1 8JN;
dEr\ oz /, Az 9E;

oFP; 9 (aJP) _9Gy
aP J—1 aP J—1 a9z J oP J—1
dFP; _ aG;
ON,. ONs
dFN; _ G,
0P; B dPs 4
FN; ] (aJN) Gy
(—)N J—1 - aN J—1 dx 7 aN J—1
2 9FP; _2_ ] aJP) Gy
At aP J N aP J J aP J
oFP; _ oGy
N, dN;
_ 9PNy _ _ 3Gy
aP; oP;
2_ dFN 5 _ _2__ L(&JN) aGJ
At 3N; At ON,\ oz aNs

(143)

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)
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oFP a dJP G
2 (____) 7 (162)
aPy,1 o0Pya\odxz/; 9P T+l
aFPJ aGJ
ONs 1 N (165)
dFN; oGy
— = — 164
P Py (164)
OFN ] oJN G
_ 9y <_) L (165)
(9NJ+1 aNJ+1 0x J aNJ+1
oFP 0 oJ P oG
— =L = (—) e (166)
aE 7—1 aE I—1 ox J aE I—1
dFN ; 9 0JN> oG
6E[_1 aEI_l( ox J - 6E1_1 (167)
OFP o (oJP oG
— ’=—<-> - =2 (168)
15 dEr\ dx /; OE;
OFN o [oJN oG
——J—_,——(—> ~ == (169)
aEI dE[ Jx J aE[
oJ P
FP; = Gy — (—) (170)
ox /,
and
aJ.
FN; = Gy + (—]6 . (ar)
oz /;
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