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no longer be satisfied with any program that does the job,

but on] y with those that will give us what we need at an

acceptable cost. Most programs in our specialty have been

written by engineers, rather than by programmers, out of

necessity. It is understandable that, not having as much

expertise in software as in microwave technology, the

engineers produced programs that were not the most

efficient ones, neither in the usage of storage nor in the

utilization of central processor time.

The time has come for us to recognize that we can reduce

the cost of our CAD’s by seeking help from those among

us who have more than a casual knowledge of Basic or

Fortran. As there are engineers specializing in instrumen-

tation who build our measurement gear or those specializ-

ing in devices who build our components, so in the coming

years there will emerge engineers who will interface with

the computer world. They will write our CAD programs

and will be the custodians of our computer-backed hard-

ware. These specialists will exchange information within

our own technical environment (including, it is hoped,

over the pages of S-MTT TRANSACTIONS) about hard-

ware and software techniques that produce good design

aids, and we shall have to create standards of performance

by which these tools can be objectively evaluated.
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Abstract—Two of the numerical methods most widely used in
solving the set of partial differential transport equations for holes,
electrons, and electric field in semiconductor devices and the various
nnrnerical instability phenomena which can be encountered are
described in detail. Also presented are approaches, using these
methods, to calculate dc static solutions and small-signal solutions,
and to simulate devices in voltage-driven, current-driven, and
circuit-loaded operation. Sample results are given for each mode of
operation for the case of ~1avalanche-diode oscillators. The numeric-
al methods and approaches are those developed at onr laboratory
and sntlicient detail is presented to permit the development of similar
Fortran codes by others.

INTRODUCTION

T HE DEVELOPMENT of semiconductor devices with

complex modes of operation, such as avalanche diodes,

has necessitated the development of detailed analysis for

the behavior of holes and electrons and their interaction

with electric fields in such devices. However, the non-

linearity of the equations which describe the behavior

of these particles in high electric fields, particularly when

space charge is significant or at high-frequent y operation,
imposes severe restrictions upon any attempt to obtain

anal ytical closed-form solutions. Because of the collision-
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dominated conduction process, the particle trajectory

methods developed extensively to study plasma phe-

nomena have little application to semiconductors. Hence,

numerical simulations [1 ]–[38] of semiconductor devices

have emerged as powerful tools for their study. In this

paper, some of these numerical methods, and in particular

those that have been developed and used by the authors

for simulating semiconductor devices and determining

their operating characteristics, are presented and reviewed.

THE TRANSPORT EQUATIONS

The behavior of holes and electrons in a one-dimensional

model of a semiconductor can be characterized by the

following partial differential equations:1 the continuity

equation for holes:

dJP
$+x –G=O

the continuity equation for electrons:

aN c3JN
—–-G=O

at – aX

and Poisson’s equation:

dE
–~(P– N- N.)=0

TX E

where

(1)

(2)

(3)

1 The notation in this paper is chosen for easy translation into a
computer language (specifically Fortran).
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time (s);

distance (cm) ;

hole density (cm–s) ;

electron density (cm–3) ;
hole particle current density (cm–2. s-l) ;

electron particle current density (cm–2. s–l);

impact and thermal generation rate (cm–3. s–l) ;

electric-field intensity (V. cm–l) ;

electronic charge (C);

dielectric constant (F. cm-l);

doping density (cm-3) (positive for the p-type

dopant, negative for the n-type dopant);

hole mobility (cmz -V-l” s–l);

electron mobility (cmz oV–l. s–l);

Boltzmann constant (J/K);

absolute temperature (K);

hole ionization coefficient (cm-’) ;

electron ionization coefficient (cm–l);

carrier lifetime (s);

intrinsic particle density (cm–3).

material parameters UP, UN, IP, and IN are

functions of electric-field intensity. These may be func-

tionally approximated but for greater accuracy and com-

putation speed are usually stored in files in tabular form

based on measured data and extrapolations of measured

data. Intermediate values are linearly interpolated. To

solve the preceding set of nonlinear partial cliff erential

equations on a digital computer, they are approximated

by a set of difference equations. These difference equa-

tions are solved for a given set of initial conditions and
boundary conditions. The various numerical methods

differ in how these difference equations are derived and

solved. In this paper, two numerical methods will be

discussed.

THE EXPLICIT METHOD

In this numerical method, a time–space mesh shown

in Fig. 1 is chosen to derive the difference equations.

Namely, the one-dimensional semiconductor is divided

into J W partitions. At both ends of each partition there

are space-charge points J (J = 1,. . . ,J W + 1), and the

hole density, electron density, and doping density are de-

fined at these space-charge points. In the middle of the two

space-charge points, there are field points 1(1 = 1,”” “ ,J W)
and the electric-field intensity, hole current density, and

electron current density and those material parameters

which are functions of the electric-field intensity are de-

fined at these field points. The upstream particle density
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Fig. 1. Tree-space mesh for the explicit method (z = ‘.J.Az,
J= l,... ,.JW + 1; t = K. At, K = 1,. ”o,KP).

is used in the drift current density terms and a central

difference is used in the diffusion current density terms.

In the explicit method, forward time differences are used.

The difference equations for the particle current densities

are, for E# > 0,

JPF = UpIK .EF .PJK – ; . UPIK “ (PJ~lK – PZK) /Ax

(7)
and

JNIK = UNrK .EIK . NJ+IK -1-: “ UNIK

. (NJ+lIC – N~K)/Az (8)

for EIK <0,

JPIK = UP1~ . EIK . P@ – ~ . UPIK
q

. (P$+lK — PJK)/AX (9)

and

JNIK = UNIK .EIK. NJ~ + ~ . UN#
q

. (NJ+lK — NJK)/AX. (10)

The generation terms at the 1 points and the J points

are approximated by

GIK = IPrK” [ .JPIK \ + INrK “ \ JNIK I (11)

and

PJK . NJK — niz

‘JK=‘(G’K+“-lK)+Tr(pJK + NJK + zn~) “ ’12)

Given the preceding expressions, the continuity equations

for holes and electrons and Poisson’s equation can be

rewritten as

PJK+l = PJK + At. ~GJK – (JPIK – JP1_lK) /Ax] ( 13)

NJK+’ = N~ + At. [GJK + (JNIK – JNT_lK)/AX] (14)

and

EIK+l = EX_lK+’ + g (P.F+l – NJK+’ – NDJ) Ax. (15)
6

For a given solution vector PJK, NJK (J = 2,” s. ,JW)
and EIK (I = 1,.”” ,JW) at the ~th time step, the values

of UPIK, UNIK, IPIK, and INI~ are obtained by linear
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interpolations of the mobility tables and ionization tables.

Then the particle current densities JPIK and JNIK are

m

P~K = z Pm exp (indAx)” (g=,~)~ (18)
m— m

calculated from (7) through (10) and the generation

terms GIK and G.# are calculated from (11) and (12). and

Based on the preceding information at the Kth time step,

(13) and (14) are used to calculate the particle densities N# = ~ N. exp (imlAz) “ (g~,.)K

P~K~l and N~+’ (J = 2,...

(19)

,JW) at the (K + 1) th time
m-w

step. The values of PIK~l, NIK+l, PW+F+l, and N.Tr+lK+l the growth factors g,,~ and gn,~ can be expressed as

are given by properly chosen space-charge boundary

conditions at the assumed metal–semiconductor inter-

faces. The electric-field intensities ErK+’ (1 = 1,... ,JW)
are calculated from (15) with the value of EIK+l chosen

to satisfy a proper electric-field boundary condition. At

this point, the advancement of the solution from the Kth

time step to the (K + 1) th time step is finished. This pro-

cedure can be repeated to advance the solution to K + 2,
K+3,..., etc.

For each time advancement, the time step At is not

a constant. In fact, the value of At has to be determined

at each time step to satisfy certain numerical stability

conditions in order to ensure that the numerical model

does not result in oscillatory behavior and diverge. There

are three stability conditions of this sort that have to be

observed as follows.
1) Causality Stability Condition: The effect (or the

response) of an excitation (or the state of the solution)

at the iYth time step will propagate to the (K + 1) th

time step in the time–space domain following a certain

characteristic path which can be interpreted as a causality

relation between the excitation and the response. If the

time step At in the time–space mesh is chosen too large,

it will result, in effect, in a calculation of the response from

insufficient information about the excitation and a numeri-

cal instability y will occur. The instability y usually occurs

when the electric-field intensity is high and particles move

at the saturated velocity. This instability is associated

with the dJP/dx and c?JN/8x terms in the continuity

equations. If only these two terms are retained in (13)

and (14 ), then substituting VP~,. and VN~ ~ (the maxi-

mum values of the particle drift velocities VP and VN)
for VP and VN and DPm.X and DN.=X (the maximum

values of the particle diffusion constants DP and DN)
for DP and DN yields

(P#+l – P,K) /At

. – {[ VP.]..” p~K — Dpnl%x(PT+lK _ p#C) /Ax]

– [VP.,.. .P~–lK – DP,,,,X . (PF – P,-,K)/AZ]}/AZ

(16)

and

(NJK+l – N,K) /At

= { [VN,,,ax .N.+,K + DNn,ax . (NJ+lK _ N>) /Ax]

– [VNm,x. NJK + DNm ax

. (N+ – N~-,K)/Ax])/Ax. (17)

If PJK and NJK are smooth enough to be represented as

g,,~ = (1 – L4p)-F A. cos (vz” Az) – ill, sin (m. Ax)

(20)

and

g.,m = (1 /fn) + An cos (m. Ax) + iBm sin (m. Ax)

(21)

where

Ap =
2DP~ax . At VP~.x . At

Axz
+

Ax
(22)

BP =
VP~ax . At

Ax
(23)

A. =
2DiVmax . At VNmax . At

Axz
+

Ax
(24)

and

(25)

In the complex plane g,,~ and g.,n generate two ellipses

centered at (1 — AP) and (1 — A.) with major axes of

2AP and 2A. and minor axes of 2BP and 2B., respectively.

These are shown in Fig. 2. To maintain numerical sta-

bility, the absolute values of gp,~ and gw,ti must be kept

less than unity, i.e.,

19ml<l and 19%ml<l (26)

for all m. This requires that ] A, \ <1 and I An I ~ 1. Let

v ~,. be the larger of VP~%x and VNmax and L)~,X be the
larger of DP~.X and DN~,X, then the time stepAt must

be chosen such that

AX2
At <

2.D~.X + V~ax. AX “

Im [gm]
b

UNIT CIRCLE

-1

— 2A

Fig. 2. The growth factor in the complex plane.

(27)
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If this stability condition is violated, the values of the ity, the time step for each instant of time must be chosen

particle densities will oscillate around a zero level at a fre- to satisfy the following space-charge stability condition:

quency of 1/(2. At).

2) Space-Charge Stability Condition: This instability At<2.1-r’l. (37)

usually occurs when the electric field is low, the particle

densities are high, and the space charge is almost neutral
3) Field Stability Condition: This instability y usually

occurs at a location where there is a large gradient of par-
and uniform. In this case, the most important terms in

the continuity equations are
title density, such as at the transition between lightly

doped and heavily doped regions. Because of the large

dP
–=-P=

gradient, the relative movement of particles will result

at
(28) in a change in the net space charge of

ax

and
AQ = q(AJP + AJN) . At.

aN . ~ avN
This change in space charge will modify the electric field

at 3X
(29) by AE = q. AQ/c, and the modification of the electric

field will affect the movement of particles after a time

and Poisson’s equation is delay of At. Since

all q
-*AQ

dx=e
(~~) JP +JN = UP-E*P – DP.~ + UN-E*N + DN~

where AQ is the net space-charge particle density. Since (38)

C3VP dVP aE _ q.uP’ and if Eo is the electric-field intensity which would yield
—sAQ (31) zero particle current for a given calculated particle density

ax = t)E”ax– e
profile, i.e.,

and
1

avN aVN aE _ q. UN’ EO =
UP-P + UN-N ( 7

. DP~–DN~ (39)
—*AQ

8X ‘dE”%– e
(32)

then
where UP’ and UN’ are the dynamic nobilities, the con-

tinuit y equations become JP +JN = (UP.P + UN*N) . (E – E,). (40)

dAQ Therefore, the loop gain of the preceding interaction is
; AQ

dt ‘–T’

(33)
AQ AE A(JP + JN)

where r’ is the dynamic dielectric relaxation time constant A(JP+JN) “ AQ “ AE

(34) q. (UP-P + UN. N)
— .At = At/r (41)

6

1 q. P.uP’
(35)

where ~ is the local static dielectric relaxation time con-
—! =
TP 6 stant and is given by

and 1. —–~+:

1 q. N. UN’
T 7P

—1 =
(36)

r. e where

Equation (33) signifies that if there were any charge

imbalance AQ it would relax exponentially to neutrality

with a time constant which is the local dynamic dielectric

relaxation time constant r’. However, in solving these
difference equations it is assumed that the rate of change

of AQ is constant over the time interval At, hence, the
change of AQ versus time follows the tangent line of the

exponential curve. If At > 2 I r’ 1, the value of AQ will

overshoot to the opposite side of neutrality and result in

an even larger charge imbalance of the opposite sign at

the next time step. This phenomenon will be repeated for

each successive time step and the net space charge will

oscillate and increase indefinitely. TO avoid this instabil-

1 q.uP. P— ——
TP e

and

1 q. UN. N—=
T?z c

If At > 2. T, the change in the net space charge accumu-

lated during this time interval will be so large as to make

the value of E overshoot to less than E. and cause a par-

ticle current flow in the opposite dkection at the next

time step. If this process is repeated for each time step,

the particles appear to move alternately to the left and
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to the right and the electric field oscillates around the Eo
level. Hence, At must be chosen to satisfy the field sta-

bility condition

At<2.1~1.

Although both the space-charge instability and the field

instability involve the effect of net space charge, in the

first instability y the change of the net space charge is caused

by the gradient of the electric field while in the second in-

stability the change of the net space charge is caused by

the gradient of the particle density. Also, if the thermal

recombination lifetime r, is very short, there will be an

instability related to it, and the stability condition (37)

must be modified to include the term I/r,. However, in

most situations r, is too long to be important.

It is important to stress that the preceding stability

criteria should not be considered rigorous in any mathe-

matical sense. The justification for these criteria lies in

the personal experience that in the numerous computer

runs made, when these stability conditions were met, no

instability y was observed.

THE IMPLICIT METHOD2

In this numerical method, the time-space mesh as shown

in Fig. 3 is chosen in deriving the cliff erence equations. Let

the vector [Q] and the vector ~F] be defined by

‘“”K]‘F]=EI=G%3
(42)

The definitions of JP, Ji?, and G are the same as in the

explicit method except the recombination term is ignored.

The objective is to find a difference equation to approxi-

mate the continuity equations evaluated at the instant

of time halfway between the Kth time step and the

(K + 1) th time step, or

[1aQ K+(W)

= [F-y+(m).z (43)

Since [F] is a nonlinear function of the solution and the

solution at K + (1/2) is unknown, the procedure is to

expand the [F] vector in terms of the solution at the Kth

time step

[-1AQ K+(llz)

At
= [F]K + $ [F]K “ [$]

[1+$[F]K. $ . (44)

Rearranging the terms yields

[

2 12[F]K . [AQ] – & [F]K. [AE] = 2[F]K.
~t – (3Q

(45)

This equation is identical to Scharfetter and Gummel’s

[11] difference equation, although the argument used in

its derivation is slightly different. Let the space-charge

operator be defined as

[
[-ZQ]K = : – & [FIK]

the field operator as

+

‘zEIK=[-iii’F’K]

(46)

(47)

[ZQ2,2][ZQ2,3]

[zQ3,2][zQ3,3][@,,]

CZQJ,J-l][ZQJ,JIIZQJ ,.r+d

[ZQJw-,,Jw_2][ZQJw-, ,Jw_,][ZQJw_,,Jw]

and the force vector as

~ZF]K = 2~F]K. (48)

Then (45) becomes

[ZQ]K . [AQ]K + [ZE]K . [AE]K = [zF]K. (49)

Equation (49) can be rewritten in more detail as

[.ZQJW,JW-J [ZQJW,JWI

[ZE,,,][ZE,,,]

[ZE3>2][Z%3]

I [ZEI,I-l][ZEI,I]

.

AP2
AN,

APJ
ANJ

APJW

.ANJw,

K

1K

1’
AEI

. AEI =

,AEJw

[ZE$W,JW-l][ZEJW ,Jw]
(50)—

2 This is based on Scharfetter and Gummel’s [11] method, except
for a modification in the boundary conditions. where
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SPACE-CHARGE

POINTS

,+, /

—~+
K .~

J-1 I- I J I J+ I

F]g. 3. $ti=~lspace mesh for the implicit method (z = ~.Azj
,...,JW + l;t = ~.At,lC = 1,...,IW).

[ZQ~,._,][ZQJ,J] [ZQJ ,J.,1]

F 1

13FPJ. dFPJ—
8PJ–1 ‘ 13Ny_l

——
dFN.r C?FNJ

dPJ_l ‘ – c?N~-1
L

[

dFPJ——
~1’J+l ‘ –

F)TNJ.— _
8PJ+1 ‘

dFPJ

8NJ+1

dFN,r

dNJ+l 11

and

[ZEJ,I-I][ZEJ,I] =

dFPJ—
dPJ ‘

.

—

dFPJ

c?NJ–-1

-1

(51)

. (52)

L -1

In (50) the large matrices are block tridiagonal and tri-

diagonal, respectively, other terms being zero. The terms

in these matrices are calculated at each time step (see the

Appendix). Thus at each J point

H
AQJ–I

[ZQJ,J--IXQJ,J,.ZQJ,J+I] “ AQJ

+ [zEJ,I-@~J,I] “

[1

= [ZFJ]. (53)
AEI

Poisson’s equation can be used to reduce thk [Z] matrix

equation to a [T] matrix equation (defined later). Define

QDXOEP by the following:

QDXOEP = q . Ax/e

then Poisson’s equation is

AE-, = AE, – QDXOEP . (APJ – ANJ). (54)

This can be used in the [Z] matrix equation to obtain

the [T] matrix equation:

II
AQJ_l

[TQJ,J-I,TQJ,J, TQJ,J+I] “ AQJ

AQJ+I

165

where

[TQJ,J-1] = [ZQJ,J-J (56)

[TQJ,J] = ~ZQJ,J] – QDXOEP “ ~ZEJ,I-~ –ZEJ,I-1]

(57)

[TQJ,.+l] = [ZQJ,J+l] (58)

~TEJ,~] = [ZEJ,l-J + [ZEJJ] (59)

and

[TF.] = [ZFJ]. (60)

The preceding [T] matrix equation can be further re-

duced to an [b’] matrix equation by assuming that the

following recursion relation exists:

[AQJ] = [QFJ] + [QQJ,J+,] “ [AQJ+I]

+ [QEJ,Il[AEr] (61)

or

[AQJ-1] = [QFJ-1] + [QQJ-l,JI . [AQJI

+ [QEJ-1,1-I][AEI-1]. (62)

Multiplying by [TQJ ,J–1] on both sides of the preceding

equation gives

[TQJ,J-l] . [AQ._,] – [TQJ,J_l][QQJ-l,J][AQJ]

– [TQ.,J-l] . [QEJ_l,~_~][AE~_~]

= [TQJ,J-l][QFJ-1]. (63)

Eliminating the [AQJ--I] term in (63) by using (55) yields

([ TQJ,J] + [TQJ,J-I][QQJ-I,J]) “ [AQJI

+ [TQJ,J+Ll[AQJ+Ll + [TEJ,I][AEI]

+ [TQJ,J_l][QE.-I,r-I] [AEI-I]

= KTFJ] – [TQ.T,J-I][QFJ-1]. (64)

Using Poisson’s equation again to eliminate the rAEI-~]
term in (64) gives

([ TQJ,J] + [TQJ,J-~][QQJ-I,J] – QDXOEP

. [TQJ,J_l] . [[QEJ-~,~-J, – [QEJ-1,1-1]]) [AQJI

+ [TQJ,J+J[AQJ+J + ([ TEJ,I] + [TQJ,J-LI

- [QEJ-1,1-1]) [AEr]

= [TFJ] – [TQJ,J_l][QFJ_l] (65)

or

[SQJ,JIIAQJI + [fiQJ,J+JIAQJ+I]

+ [SEJ,IIIAEII = [SFJI (66)

where

[TQQQJ] = [TQJ,J-J[QQJ-l,J] (67)

[TQQEJ] = [TQJ,J-I][QEJ-1,1-1] (68)

[TQQFJ] = [TQJ,J-d[QFJ-11 (69)

[SQJ,J] = [TQJ,J] + [TQQQJI

+ LTEJ,I] . LAEI] = L_TFJ] (55) — QDXOEP([TQQEJ], – [TQQEJI) (70)
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[A’SQJ,J+I] = [TQJ,J+II (71)

[SE,,.] = [TE~,l] + [TQQEJ] (72)

and

[A’FJ] = 11’FJ] – [1’QQF~]. (73)

Finally, the [Q] matrix equation is calculated from the

[S] matrix equation:

[AQJI = [QFJ] + [QQJ,J+IIIAQJ+II + [QEJ,Tl[AErl

(74)

where

[QQJ.J+II = – [8QJ,JI-1 “ [~QJ,J+I] (75)

[QEJ,I] = – [6’QJ,J]-’[SEJ,I]

and

[QFJI = [SQJ,J]-1[8FJ].

To initialize ,the recursive calculations of

the starting values for [QQl,z], [QEuI, and

(76)

(77)

(67)-(69) ,

[QFI1 can

be found as shown below. Recall that the bound~ry c&di-

tion requires that [AQ,] = O. Notice that [AQ,] =

[QFJ + [QQ1,21[AQ21 + [QEl,l][AE~]. In order to ob-
tain [AQI] = O for any calculated [AQ,] and [AEI], the

following relations must hold:

[QQM1 = O (78)

[QE1,l] = O (79)

and

[QF,] = O. (80)

These are used as starting values to calculate [QQJ,J+I],
[QEJ,r], and [QFX] for J = 2,.. .,JW.

The values of [AQJW+l] and [AEJw] are set by bound-

ary conditions. The solutions [AQJ] (J = 2,. . . ,JW) and
[AEI](l = 1,0.., JW) and then obtained by back sub-

stitutions, i.e., by repeatedly using (54) and (74).

DC SOLUTIONS

Both the explicit and implicit methods can be used to

calculate de static solutions. To start with, an initial guess

of f’J, NJ (~ = 1,. . . ,JW + 1) and EJ (J = 1,.. .,JW)
must be made. Then, one of these two methods is used to

carry out the calculation for a sufficient time until the

difference between two successive calculations is less than

a preset tolerance (say 0.1 percent ). The final calculation

is considered to be the de static solution.

At the boundary, it is assumed that the surface-state

density is high enough so that the surface recombination

velocity is infinite, and the semiconductor is verv extrinsic.

Hence, the particle density at the boundary is “

the majority particle density = I doping density I

and

the minority particle density = n?/1 doping density

(81)

1.

(82)

This is the boundary condition for the particle densities.

For the boundary condition on the electric field, in-

tuitively one might be tempted to apply a constant total

current across the device. However, if the device exhibits

some negative conductance and zero susceptance at a

certain frequency and if the device happens to be short-

circuit stable at this frequency, the calculation, with a

constant total current as a boundary condition, will result

in a relaxation-type oscillation instead of a de static solu-

tion. Hence, it is better to choose the value of the electric

field at the boundaries iteratively such that the space

average of the particle current density over the active

region of the device is equal to the specified de bias current.

For the explicit method, this boundary condition can be

applied either to El or to EJW. The integration of Poisson)s

equation is then carried out from this boundary to the

other boundary. For the implicit method, this boundary

condition is applied to AEJW; only the back substitution

is repeated for each choice of AEJW. Fig. 4 shows the de

static solutions of an n+–p-p+ Si diode biased at four dif-

ferent values of de current.

SMALL-SIGNAL SOLUTIONS

Once the de static solution of a device is obtained, its

small-signal solution can be calculated by applying per-

turbation theory to the de static solution. To derive the

perturbation equations, the continuity equations for holes

and electrons and Poisson’s equation [(1) –(3) and defini-

tions (42) ] are employed.

Introducing small-signal perturbations AP, AN, and

AE yields

P= PO+AP

I

or [Q] = [Qo] + [AQI (83)
N= NO+AN

E= EO+AE (84)

dJPo dJPo dJPo
JP =JPO+=. AP+=. AN+ Z.AE (85)

c3JN, dJNo dJNO
JN=JN, +T. AP+=. AN+ T.AE (86)

and

G = GO+~.AP+~.AN+~.AE (87)

where Po, No, EO,JPO, JNOJand Go are the dc, solutions, i.e.,

dJPO 8P0
—–Go=O ~=0

ax
(88)

dJNO 8No—— –G=O ~=0
ax

and

(89)

8E0 i3Eo
—–~(PO– NO– N.)=0 ~=0. (90)
ax ~

Assuming these small-signal perturbations vary in time

proportionally to exp ( @), substituting (83) – (87) into
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l)-(3) and eliminating all dc terms by using (88)-(90)

ields

aFP dFP dFP
joAP = ~AP+~AN+%AE (91)

dFN dFN 8FN
joAN = ~AP+— AN+—————

dN dE
All (92)

nd

E)AE
—=~(AP– AN).

ax
(93)

lquations (91) and (92) are rewritten in matrix form as

3110WS:

[
jti – $ L-F]] . [AQ] – --& [F] . [AE] = [0]. (94)

By using the same time–space mesh and the same formu-

itions for JPIK, JNZK, and ~JK that were used in the

rnplicit method, a system of matrix equations can be con-

structed similar to (50) and Poisson’s equation with only

he following differences.

+ [q&)Jw>*(~)JJ:]o (95)

Since there is a null vector [0] at the right-hand side of

the small-signal equation, i.e., [ZF] = O,itcan be shown,

when the [Z] matrix equation is reduced into the [Q] ma-

trix equation, that always [QF] = O. Recall [AQ]Jm+l = O.

Hence, at the JW point

AQJw = QEJw,Jw _ AEJW

or

[I=[:I”MJW=‘“)
Substituting (96) into (95) gives the following boundary

condition for tiJW:

AEJW =
AJT “

. (97)
@ + q[ (dJP/dE) JW + (dJN/dE) JW + (aJP/aP) JW “ QEPJW,JW + (dJN/dN) JWQENJW,JW]

1) Wherever 2/At occurred, jti now appears.

2) Instead of [2FK] at the right-hand side of (50), the

ull vector [0] now appears.

3) The doping density term is dropped in Poisson’s

quation.

4) All of the terms in the matrix equations are now

omplex numbers or complex variables.

5) The AP, AN, and AE terms are redefined to be the

erturbations instead of the changes of the solution during

he time interval At.

Hence, after the dc static solution of a device biased

t a specified dc current is obtained, the calculation of

x small-signal solution at any specified frequency is

knilar to one time-step advancement using the implicit

lethod. The implicit method computer program can be

hanged into a small-signal program after some modlfica-

Lons corresponding to the preceding differences.

The boundary conditions for the particle densities in

he small-signal calculation are the same as those used in

he implicit method.

The boundary condition for the electric field is derived

s follows. Assume that the perturbation of the total

urrent across the device is AJT. The continuity of total

urrent at the point J W requires

JT = jae. AEJw + q . (AJPJW + AJNJw)

[( )dJP
= .jclx .AEJw+q. ~ APJW

JW

()

aJP
+— . AEJW

aE Jw

Usually AJT = exp ( jd) A/cmz is used in the calcula-

tion.

Once APJ and ANJ (J = 2,0.0 ,JW) and AEJ

(J = 1,00. ,JW) are calculated, the perturbation of the

terminal voltage AVT can be found by

AVT = ‘~ (~J. Ax) (98)
J=l

then the small-signal admittance and impedance can be

calculated from AJT and AVT.
Fig. 5 shows the small-signal admittance of the same

50 GHz- I
2

3
0 GHz

k ‘dc’05x10\ I 2

I I
-2 0 2 4 6 8 10 12

G, kmho/cm2

Fig. 5. Small-signal G-B locus of a 2-~m p-type Si diode for different
bias currents.

n+-p-p+ Si diode biased at from 500 A/cmz up to 10000

A/cmz dc current and over the frequency range from dc

to 50 GHz.
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THE SIMULATION OE VOLTAGEDRIVEN RF OPERATIONS

The objective of this kind of simulation is to understand

the deviee physics and to calculate the characteristics of

the device either as an oscillator or as an amphfier when

its terminal voltage is specified as a function of time.

The boundary conditions for the particle densities are

the same as in the dc static calculation. The electric field

at the boundary is chosen to yield the specified terminal

voltage. For the explicit method, this is a one-shot cal-

culation. For the implicit method, the value of EJI# at

each time step has to be chosen iteratively until this

boundary condition is satisfied within a specified tolerance.

In some cases, it may be desired to study the RF opera-

tion of the device biased at a specified dc current density

instead of a specified dc voltage. ‘For this purpose, the

circuit model shown in Fig. 6 can be used. Of course, the

coupling network between the device and the RF voltage

source can be made more complicated than the single

capacitor show in Fig. 6. The terminal voltage at each

time step, wluch can be calculated by solving the circuit

equation, is used as the boundar y condition for the electric

field.

Fig. 7 shows the terminal voltage waveform and induced

current waveform versus time generated by using the ex-

plicit method for an n+-p-p+ Si diode biased with a dc

current source of 1000 A/cm? and driven by a 25-GHz 1O-V

sinusoidal RF voltage, coupled through a O.l-pF/cm2

capacitor. However, this circuit model does not always

yield single-frequency operation. When the deyice exhibits

negative conductance at a low frequency and the coupling

network is not chosen properly, this simulation sometimes

results in some low-freq~uency bias circuit oscillation in

addition to the specified RF voltage. Fig. 8 shows a sample

of this lower frequency oscillation whic”h occurs when the

coupling capacitor in the simulation of Fig. 7 is changed

to 0.01 pF/cm2. To avoid these low-frequency oscillations,

the simulation can be done in the following way. Assume

the diode is driven by an RF voltage source and a dc volt-

age source connected in series. The frequency and am-

plitude of the RF voltage source have fixed values, but

the dc voltage source is to be iteratively chosen to yield

the desired dc bias current density at the end of each

microwave period. The same solution vector for P, N,
and E at zero phase angle is used repeatedly until the

average current density over one microwave period is close

enough to the specified Jdc, then the newly generated solu-

tion P, N, and Eat 360° phase angle is used as the starting

solution and the preceding iteration is repeated. The cal-

culation is continued until the solution becomes periodic.
The transient period of this simulation has no physical

meaning because V& is constantly being adjusted arti-

ficially. However, it always ~elds a single-frequency RF

voltage-driven periodic solution without the low-frequency

bias circuit oscillation. Fig. 9 shows the terminal voltage

and induced current waveform generated by this simula-

tion method for the same n+-p-p+ Si diode driven by a

25-GHz 1O-V RF voltage source and a dc voltage source

to yield a dc bias current of 1000 A/cm2. Fig. 10 shows, the

169

c~

mtJ~c DEVICE - ‘RF

Fig. 6. Circuit model for the simulation of devices biased with
specified dc current.
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solution for P, N, and E at different phase angles when

the preceding simulation becomes periodic.

SIMULATION OF CURRENT-DRIVEN RF OPERATION

In this case, the total current density across the diode

versus time is specified. For the explicit method, the ter-

minal voltage at the (K + 1) th time step can be cal-

culated from the given total current density by using the

following relation:

JTK = eW~( VTK+l – VTK)/At + JINK (99)

where JINK is the induced current density at the Kth time

step. This calculated VTK+l is used as a boundary condi-

tion just as in the voltage-driven case. For the implicit

method, the value of AEJWK+l can be calculated from

diode. Before the zero phase angle, the diode is assumed

to be biased at a constant current density of 0.1 A/cm2,

and the values of P, N, and E are calculated by the dc

program. Starting from the zero phase angle, the diode is

driven by a constant current density of 20000 A/cm2.

The simulation is continued until the terminal voltage has

recovered to the dc breakdown voltage (thk moment is

defined to be 180° phase angle). Then the diode is assumed

to be driven by the 0.1 A/cm2 current density between

180° and 360° phase angle. Fig. 12 shows P, N, and E
versus distance at several cliff erent phase angles.

SIMULATION OF CIRCUIT-LOADED DEVICES

The objective of this kind of simulation is to investigate

the behavior of the device when it is connected to a micro-

AJTK+(l/2)

‘E’fi+’ = (e/At) + q[(aJP/dE) ,@ + (aJN/dE) JWK + (dJP/dP) JWKQEPJW,JW + (dJN/dN) JW%?ENJW,J+] “

The derivation of the preceding equation is similar to

that of (97), except that the AJTK~~112~is redefined to

be the change of total current density between the Kth

and (K + l)th time step.

The boundary conditions for the particle densities are

still identical with those used in the dc static calculation.

Fig. 11 shows a simulation by the explicit method of

the TRAPA~T mode of operation of the same n+-p-p+ Si

(loo)

wave circuit with some kind of dc bias source. There are

basically two different approaches. One is the approach

used by Evans and Scharfetter [39], the other one is the

approach of Matsumura and Abe [40].

In the approach of Evans and Scharfetter [39], the

circuit is divided into several elements, each one of these

elements is represented by its ABCD matrix. The driving

point admittance yd (a) at the device point can be found

by repeated multiplication of these matrices. Then the

impulse response y(t) of this circuit is obtained from the

inverse Fourier transform of the driving point admittance
u
Cl I I yd(bJ), i.e.,

.=.~w ~

PHfl~E RNGiE , DEGREE “

..J.O

Fig. 11. Terminal voltage, total current, and particle current
waveforms for the TRAPATT operation of an Si n+-p-p+ diode
(diode width = 2 ~m; f = 3.0 GHz; J!l’0 = 0.1 A/cm’; JT = 20
kA/cm’).

/
yd(t) = L mYd(co) exp ( –jcdt)h.

2r _w
(101)

The transfer admittance Y~ (Q) and the impulse transfer

admittance ~b(t)from the biasing voltage source vb to

the device point can be found in a similar way.

The total current across the device in the frequency

domain JT(co) is given by

JT(0) = – Yd(0) . VRF(CO) -t yb(~) “ V,. (102)

At any instant of time t,the total current across the device

in the time domain JT (t) is given by the convolution of

the impulse admittance and the voltage:

/

t
cTT(t) = Yb(()) o Vb – ?/d(t – T) . VRF(T) dr. (103)

t—T

The convolution is truncated at T, beyond which yd is

negligibly small. The calculation of JT (t) has to be done

at each time step, and is used as the boundary condition

for the electric field in the implicit method. For the ex-
plicit method, the terminal voltage VT(t) can be cal-

culated similarly using the impulse impedance. The bound-

ary conditions for the particle densities are still the same

as those in the dc static calculation.
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In the approachof Matsumura and Abe [40], thede-

vice is assumed to be connected to a transmission line

filledwithseveral tuningslugsandterminated withaload-

ing resistor in series with a biasing voltage source as shown

in Fig. 13. The characteristic impedances of the trans-

mission line and tuning slugs are assumed to be inde-’

pendent of frequency. In the transmission line, there is

a forward voltage wave v+ (x)t ) and a forward current wave

i+ (z,t) that travel toward the load, and a backward voltage

wave v– (x,t ) and a backward current wave i– (x$) that

travel toward the device. These traveling waves do not

change their shapes until they reach a discontinuity.

Hence, in the uniform portion of the transmission line,

for each At advancement these waves change as follows:

V+(X + Ax, t + At) = V+(X,t) (104)

V–(% – fix, t + At) = V_(X,t) (105)

i+(x,t) = v+(z,t)/zo (106)

and

i–(x,t) = —v-(@)/zo (107)

t-
-1
0
>
In
0
IL
0

.
+

(f)
Fig. 12. (Continued.)

where 20 is the characteristic impedance of the transmis-

sion line and Ax/At = c (wave velocity).

At the dkcontinuity (for example, at xl in Fig. 13)

given V+(XI – Ax,t) and V–(XI + Ax,t), v+ (xl,t + At) and

V– (xl)t + At) can be calculated from

20 – 21
v+(q,t + At) = V_(XI + Axlt) 21 + Z.

220
+ V+(XI – Aqt)

z, + 20
(108)

TUNING SLUGS

*1, ‘+ &2+

‘o ‘1 ‘2 ‘3 ‘4 ‘L

Fig. 13. Circuit model usedAie ~hel approach of Matsumura and

and

21 – 20
v-(zl,t + At) = V+(X1 — Ax,~)

z, + 20

+ v_(z, + Ax,t) 212:20. (109)

At the load plane XL the following results:

Vb/RL
~(~~,t + @ = (l/zo + l/RJ

(1/20 – l/RL)
(110)+ V+(XL – AxJ) (~/Zo + l/RL) .

At the device plane XOthe following results:

At . W~
VT(t + At) = W’(t) + ~

.[VT(t) – 2v_(xo + Ax,t)/ZO – JIN(t) “Ad

(111)

where Ad is the device area and JIN ( t) is the induced cur-
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rent. This calculated W is then used as the boundary

condition for the electric field in the explicit method. For

the implicit method, JT (t + At) can be found in a similar

way.

When performing this kind of simulation, the investiga-

tor has no prior knowledge about the oscillation frequency

and amplitude or the mode of operation in which the de-

vice will operate. Hence, although this kind of simulation

will yield results that are closer to physical reality, it is

very costly for analysis and optimization purposes.

COMPARISON OF THE IMPLICIT AND EXPLICIT METHODS

FOR THE SIMULATION OF AVALANCHE DIODES

Although the explicit method is very inexpensive for

each advancement of At, because the size of At is limited

by the stability conditions, it may become expensive when

the particle densities are high, the nobilities are high or

when the simulation is to be carried over a long time dura-

tion. For Si IMPATT devices, the explicit method has defi-

nitely proven to be less expensive. On the other hand, for

the calculation of the dc solution the explicit method is

approximately twice as expensive as the implicit method.

As can be seen, the implicit method is complicated and

hence, is more expensive for each At. On the other hand,

it is more stable numerically and the time step At can

usually be made very large. Because of this, the implicit

method is often used to calculate the dc static solution by

setting the time step At to be infinite. The stability condi-

tions for the implicit method have not been investigated.

It has been observed that if the initial guess is not good,

the implicit method sometimes becomes unstable with

At = w , while the explicit method always converges to

a dc static solution even with a poor initial guess, although

it may cost more because the calculation must be carried

over a large number of time steps. Usually, the explicit

method is used to calculate the first set of dc static solu-

tions of a device, then the implicit method is used to find

the other dc static solutions for different bias currents

using the first set of solutions as initial guesses. For large-

signal simulation of Si IMPATT and TRAPATT diodes, the

explicit method has always been used by the authors. For

the simulation of a transistor, the implicit method is more

desirable because a high doping density is involved.

APPENDIX

THE FORMULATION FOR THE CONSTRUCTION OF THE

MATRIX EQUATION IN THE IMPLICIT METHOD

The terms in the matrix equation (50) in the implicit

method can be calculated as follows. For each field point

1, the following are calculated:

KTOQDX = kT/ (qAx)

dUPI aUNI
D UPDEI = — D UNDEI = —

dEI dEI

aI.PI
DIPDEI = —

aINr
DINDEI = —

aEr dE1 “

When EI 2 0, the following results:

~ = (E, + KTOQDX) UP, (112)

dJPI
— = – KTOQDX . UP,
dpJ+l

dJpI
— = UPI . PJ -+ D UPDEr
dEr

. ~Er . PJ – KTOQDX (P,.,

aJNr
— = –KTOQDX . U]
dNJ

aJNr
— = (E, + KTOQDX:
dNJ+l

c3JNI c3JN1 o

dpJ = @J+l =

and

dJNI
— = UNI . NJ~~ + D UNDEI
dEI

. [E, . N.+l + KTOQDX “ (NJ+l

When EI <0, the following results:

aJPr
— = KTOQDX . UP1
aPJ

PJ) ] (115)

I

. UN1

NJ) ].

dJNr
— = UN1 . NJ + DUNDEI
dE1

(113)

(114)

dJPr
— = (E1 – KTOQDX) . UP,
dpJ+l

r3JP1 dJPr
—=0

dNJ = dN.r+l

dJpl
— = UPI . pJ~l -1-D UPDEI
&%

. [E, . PJ+, – KTOQDX “ (PJ+I – PJ) 1

a$ = (EI – KTOQDX) . UNI

aJNI
— = KTOQDX “ UNI
r3N.r+l

dJNr aJNI—= — =0
apJ r3pJ+l

and

. ~E1 . NJ + KTOQDX “ (NJ+I

(116)

(117)

(118)

(119)

(120:)

(121”)

(122)

(123)

(124)

(125)

(126)

NJ)]. (127)
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When sign (z) is defined as follows:

[

+1, ifxz O

sign (z) =

–1, ifz<O

the generation terms are calculated as

dG1 dJPI
—= IPI. —
aPJ dPJ

o sign (JPT)

E)G1 dJNr
—= IN1. —
dN,r aNJ

. sign (JNr)

c3GI dJP1
—= IPI. —
aPJ+l al’J+l

o sign (JP1 )

aG1 aJNI
—= INI. —
dN.r+l 13NJ+I

. sign (JN~)

and
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Zi&l(%3J=&l(%29J=0 “43)

H%).=i”tw%) “45)(128)

(129)

(130)

(131)

ik(%).T=&(%i3J=0‘14’)
a

()

aJP 1 aJP1
— — .——
apJ+l ax = AX apJ+l

(147)

a

()

aJN 1 3JNI
— — .——
dN.r+l ax ~ AX aNJ+l

(148)

*(%9J=&(%9J=0
(149)

aGI—= DIPDE1 . I JPI I + DINDE1 . I JNr I + IPr
aE1

aJP1 aJNr
— “ sign (JP1) + INr . —

“ aEr aEI
. sign (JN,). (132)

Then at each space-charge point J, itcan be seen that

a

()

3JP 1 aJPr_l
— . ——
aEI-1 aX J = – AX aE1–1

(150)

(151)

(152)

a

()

aJN 1 3JNI_1——
aE1_l aX J = – AX aE1_l

a

-(–)

aJP 1 aJP1—
aEI aX J – ~X a&aGJ 1 aGr–1— ____

aE1–1 2 aEr–1

aGJ 1 3G1—= ——
aE1 2 aEr

aG.r 1 aGT_l.—
apJ-1 = 2 apJ_l

aGJ 1 a&l
— .——

aNJ_l 2 aNJ–1

aGJ

(

1 a&l + 3GI

)
—= .— _
apJ 2 apJ apJ

aGJ

(

1 aGr_l + aGr—= __ _
3NJ 2 3NJ 3NJ )

aGJ 1 3G1— ___
apJ+l 2 apJ+l

aGJ 1 aGl
=—

aN.r+l 2 aN.r+l

a

()

aJP 1 aJ&l— _ ——
apJ–1 ax J = – AX apJ_l

a

(7

aJ 1 aJN1–1— . .—— —
aN~–1 ax J AX aN.r_l

(133)

and

(134)
a

-( 7

aJ 1 aJN,
—= .—

aE1 ax J Ax 3131 “
(153)

Finally,

(135) aFpJ a ()aJP.— .— —
apJ_l apJ_l ax J –

aGJ

al’J_l
(154)

(136)

(137)

aFpJ aGJ
—

aN.r_l = — CJN.u
(155)

3FNJ a~J
—— ._—

apJ_l apJ_l
(156)

(138) c3FNJ a

(9

aJ
.— ._— —

aNJ_l aN.r-l 3X J
– = (157)

aNJ_l

2 3FPJ
(139) – _ — .

()

aJP aGJ

At apJ
$+~— –—

apJ ax J apJ
(158)

(140)
t3FpJ r3G.r_— ._—
E)NJ aNx

(159)

(141)
3FNJ aG.r—— ._—

apJ apJ
(160)

(142)
2

(7

aFNJ 2 a aJ._— .._ —
At aNJ At aNJ

— – ~ (161)
ax J
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dFP~ d

()

c3JP dGJ_— .— __ _
dpJ~l dpJ~l dx J dl’J~l

r3FNJ a ()8JN aGJ
_— .— — —

8NJ+I 8N.r+l 8X J — f3N.r+l

F)FPJ a

-( )

aJP 8GJ— —_ —
dEr = c3EI ax J aEI

()8JP
FPJ=GJ– —

ax J

and

v)aJ
FNJ=GJ+ —

13x J“
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